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This article explores the application of thermodynamic and statistical thermodynamic 
formalism to information theory problems. In particular, the applicability of the 
transformation theory of thermodynamics is investigated. After a brief tutorial dis- 
cussion of thermodynamic and statistical thermodynamic methods and concepts, 
their information theory analogues are developed. Besides information theory entropy, 
the information theory counterparts of temperature, chemical potential, Helmholtz 
free energy, etc., are developed and related to conventional information theory concepts 
such as channel capacity, matching of source and channel, etc. Information theory 
theorems are proved via the statistical thermodynamic analogue method; and, finally, 
several problems are formulated and solved using thermodynamic-like transformations. 
This article is aimed chiefly at bridging the interface between the two disciplines, and 
is intended to be provocative. Therefore, no attempt has been made to have it be all 
inclusive. 

KEY WORDS: Information theory; Thermodynamic transformations; Partition 
function; Statistical thermodynamics; Channel capacity; Matching; Noiseless channel; 
Compact code. 

1. U S E F U L N E S S  O F  T H E  I N T E R D I S C I P L I N A R Y  A P P R O A C H  

The s imilar i ty  between certain ideas f rom in fo rmat ion  theory  and those or iginat ing 
in stat ist ical  mechanics  has been recognized for  some time. The mos t  famous  o f  these 
cor respondences  involves the in fo rmat ion  theory  entropy, which bears  a great  deal  
o f  resemblance  to the quant i ty  o f  the same name  employed  in stat is t ical  the rmo-  
dynamics .  I n fo rma t ion  theorists  have been quick to po in t  out,  however,  tha t  the 
s imilar i ty  is, in many  respects,  only  fo rmal  and  the real tasks of  in fo rmat ion  theory  
are  no t  measurab ly  l ightened by  the awareness  o f  this correspondence.  

In  spite o f  this disclaimer,  several dis t inguished au thors  have a t t empted  to 
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combine information theory and physics in various ways. It is convenient to classify 
these attempts under a number of descriptive headings which serve to characterize 
unique modes of interdisciplinary inquiry. 

1.1. Direct Combination 

In this mode, which is best typified by the discussions of L. Brillouin, m the 
entropies of information theory and of thermodynamics are considered to be one 
and the same. Thus in making a physical observation the entropy of the universe is 
always increased, the smallest increase possible (for a 50 ~ chance of having "meter" 
deflection not due to Brownian motion) being k In 2, where k is Boltzmann's constant. 
In performing a measurement on a given system, the entropy of that system may be 
decreased since after the measurement it may be in a more well defined state, but the 
process of measurement is an irreversible one (in the thermodynamic sense) and must 
be accompanied by an overall increase in the entropy of the universe. By the same line 
of reasoning, the process of communication in which information is transmitted from 
a source "system" to a receiving "environment" corresponds to a measurement on 
the state of the "source" and requires an overall increase in entropy. Energy will be 
expended in sending the message and the energy-entropy balance can be analyzed 
in the physical thermodynamic sense. Frequently, however, the information entropy 
effects are so small (k In 2, for example) that although they can be directly combined 
with those due to physical entropy, such combination has little value beyond rounding 
out the internal consistency of the theory. 

1.2. Foundations of Statistical Mechanics 

In this mode, of which E. T. Jaynes is the chief proponent, ~ the concepts of 
information theory are substituted for other formulations (for example, the Gibbsian 
ensemble approach) in order to provide a basis for the discipline of statistical mechan- 
ics. The various distributions are exhibited as those which are least biased, subject to 
whatever "information" (constraints) is imposed on the mechanical system. Although 
this formulation leads to the same relationships as those derived in the conventional 
approach, it has not been widely adopted, probably because it relinquishes the goal 
of exhibiting thermodynamics as a branch of mechanics; an idea which has consumed 
chemists and physicists for nearly a century. On the other hand, Jaynes' approach 
does possess the merit of being self-contained, intuitively pleasing, didactically simple, 
and, by its very nature, minimally biased. 

1.3. Manipulations of Information Theory 

A third mode involves the use of the manipulative procedures of statistical 
thermodynamics as a tool in performing the tasks of information theory itself. Thus 
the mathematical procedures, the "folklore" of statistical mechanics, are applied 
wherever possible to lighten the burden of formal manipulation within information 
theory. In some respects this mode is the inverse of that described above, and it is 
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not surprising that Jaynes has produced what appears to be the only published paper (3) 
on the subject. This is a very interesting attempt, but for reasons which we shall try 
to analyze below, the work seems not to have been widely noticed. This is a pity 
because Jaynes' paper is both first class and provocative. It should be pointed out, 
however, that the use of this approach does not produce anything which cannot in 
principle be derived by the standard techniques of information theory. It merely 
provides an alternative and perhaps, occasionally, more concise method of derivation. 

Of the three categories discussed above, the first two represent blendings of 
physics and information "theory in the interest of obtaining additional insight into 
physical phenomena. The last category, however, is conceptual and mathematical. 
Whether or not entropy, as used in information theory, admits of any physical 
interpretation is beside the point. Within information theory itself--with Shannon's 
first theorem, (4~ for example--this is the essential view. According to this theorem, 
the entropy per symbol merely defines the average code-word length for a compact 
code.(5~ In Jaynes' paper this point of view is conserved, and any functions or methods 
reminiscent of statistical thermodynamics are only formally so. 

There are, however, several possible advantages (some of which were mentioned 
by Jaynes) in the interdisciplinary approach. These are: 

1. There are mathematical methods, sometimes motivated by physical intuition, 
which exist in statistical thermodynamics which may be suitable but which 
have not yet been exploited for information theory. 

2. There may be concepts and definitions, useful in statistical mechanics, which 
are valuable in information theory. 

3. By translating information theory into a language familiar to statistical 
mechanicians, and the reverse, a large group of interested persons may be 
stimulated to attack problems. 

4. The establishment of common languages will permit dialogue which will keep 
each discipline aware of relevant developments in the other. 

In the opinion of the present writer, Jaynes' article did not receive its proper 
share of attention for the following reasons. In the first place it was brief, only a ~ 
according to its title. The title itself referred to "unique decipherability" and did not 
call attention to the use of thermodynamic formalism. Furthermore, it was published 
in the Transactions of the IRE and has probably been exposed to an audience many 
of whom, in view of their field of specialization, are not deeply familiar with the field 
of statistical thermodynamics. In spite of this last condition, Jaynes did not provide 
a tutorial preface on statistical thermodynamics. Finally, Jaynes himself seems not 
to have pursued the subject or to have publicized his point of view beyond the effort 
represented by his single article. 

Nevertheless, the present writer feels there is considerable merit in Jaynes' 
original idea. The central purpose of the Journal of Statistical Physics is the bridging 
of interfaces between disciplines, and so it is quite appropriate to attempt to develop 
Jaynes' theme further, and to provide space for a tutorial preface which will assist the 
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information theorist to gain insight into some of the manipulative philosophy of 
statistical thermodynamics. Attention is focused on helping the information theorist 
rather than the statistical thermodynamicist since the techniques to be introduced 
are used for the solution of information theory problems, where they may be novel, 
rather than for statistical mechanics, where they are common. This does not imply 
that the techniques of information theory have nothing to offer statistical mechanicians 
(or for that matter, physicists in general). They do, and in fact this has been the more 
usual direction of transfer of methodology, falling under the headings of the first 
two categories above. In this article we endeavor to reverse the flow. 

Before addressing the main task, however, the author feels compelled to make 
a qualifying statement. This is that he knows very little about information theory 
and more about statistical thermodynamics. As a result, his judgments concerning 
what is important in information theory (or for that matter even what is right) may 
leave something to be desired. On the other hand, perhaps this is an undersubscribed 
method for penetrating an interface--having an expert in one field apply his special 
skills to the solution of problems in another, rather than the reverse in which an 
expert in one field attempts to adopt the skills of another for the solution of problems 
in his own field. 

2. T H E  T R A N S F O R M A T I O N  T H E O R Y  O F  T H E R M O D Y N A M I C S  

Strictly speaking, Jaynes (3) concentrated on using the partition fimction (or its 
analogue) of statistical mechanics in the study of an information theory problem 
which he called "semi-optimal transmission." Although most uses of the partition 
function imply the transformation theory of thermodynamics, Jaynes did not address 
this body of knowledge explicitly; and in this paper, besides commenting on Jaynes' 
work, we shall examine how such transformations may be used in information theory. 
Before doing this, it is useful to undertake a brief review of certain manipulative 
aspects of thermodynamics.CG) 

One of the most powerful features of thermodynamics is the service it provides 
in making possible the transformation of one set of experimental data on the macro- 
scopic behavior of a system (at equilibrium) into another set. Thus the proper use of 
thermodynamics may avoid the performance of redundant measurements. For 
example, if the coefficient of thermal expansion, the isothermal compressibility, 
the heat capacity at constant volume, and the temperature and volume of a substance 
have been measured, it is unnecessary to measure the heat capacity at constant pressure. 
It may be calculated from the measured values of the prior properties by means of 
thermodynamic transformation. This transformation is independent of the micro- 
scopic (atomic and molecular) structure of the substance involved. 

The transformation is based on the theory of exact differentials. (7) Some of the 
important relations involving exact differentials follow. 

If f (x, y, z) is an analytic function of x, y, and z (so that dfis an exact differential), 
and we have 

df = X dx + Y dy + Z dz (1) 
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where X, Y, and Z are also analytic functions of x, y, and z, then it must be true that 

of 

ef 

and furthermore 

~X ~Y 

0Y 0Z 

~X 0Z 

(3) 

Still another useful relation is the following: 

(4) 

Several others exist, but it is not necessary to document all of  them here. 
The essential roles of the laws of thermodynamics are to postulate the existence 

of functions which depend only on the variables which characterize the thermo- 
dynamic state and whose differentials with respect to these variables are therefore 
exact. If in Eqs. (1)-(4)fis such a function and x, y, and z are thermodynamic variables 
of state, then relations such as Eqs. (2)-(4) represent transformations among thermo- 
dynamic variables. Thus the laws of thermodynamics make the transformations 
possible. 

For example, the zeroth law of thermodynamics (8~ postulates the existence of the 
temperature function of  state, and prescribes a method for its measurement. Thefirst 
law (9~ postulates the existence of a function of state U called the internal energy and 
prescribes a method for its measurement. The prescription in this case is the following. 
One encloses the system in an adiabatic shell (one which does not permit the system 
to exchange energy in the form of heat with its surroundings) and causes it to undergo 
a change of state by performing a certain amount of work AoJa on the system. Then 
the change in U is given by 

A U = A oa (5) 

In this way U can be determined to within a constant term for any system. Since 
only changes in U are important in thermodynamics, it is unnecessary to specify the 
precise value of this constant. 
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If the same change of state is conducted without the adiabatic shell, the work may 
be represented by Am rather than A~%, and in general it is found that 

A U @ A co (6) 

(A U having been determined previously by the adiabatic process). The equality can 
be repaired by adding a compensating term Aq in Eq. (6). Thus 

A U =  Am + Aq (7) 

where Aq is referred to as the heat absorbed by the system during the change. 
The second law of thermodynamics (1~ postulates the existence of a function of 

state S called the entropy, and also prescribes a method of measurement. Thus one 
measures the heat absorbed by the system during a change of state conducted in a 
thermodynamically reversible (G) manner. If this heat is absorbed at one temperature T, 
then 

AS = A q / r  (8) 

Again the determination is to within a constant. If the process is not isothermal, 
then one may consider infinitesimal steps and write 

dS = Dq/T (9) 

The total change in entropy is then computed by integration. D is used on the right 
of Eq. (9) to indicate that Dq, unlike dS, is not an exact differential. 

Writing Eq. (7) in differential form and substituting Eq. (9) yields 

dU = T d S  + De) (10) 

If, for example, work can be performed on the system only by changing its volume V, 

Do) = --p dV (11) 

where p is the equilibrium pressure (because, since T dS is the reversible heat, DoJ must 
be the reversible work) and Eq. (10) becomes 

dU = T d S  -- p dV (12) 

The power of the thermodynamic method depends upon the number of quantities 
which can be demonstrated to be state functions. Besides the primary functions 
established by the laws of thermodynamics, it is possible to synthesize derived state 
functions by combining quantities already known to be state functions. Familiar 
examples of such derived functions are the enthalpy, 

H = U + p V  (13) 

the Helmholtz free energy, 

A = U -  TS (14) 
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and the Gibbs f r ee  energy, 

G = U §  TS (15) 

The application of Eqs. (2) and (3) to (12) yields the interesting transformation 

~U ~U 

(16) 
S T  / ~p ~ 

Similar transformations may be obtained by taking the total differentials of H, A and 
G, substi tut ing Eq. (12), and, finally, applying Eqs. (2) and (3). Thus 

(17) d H  = d U  + p d V  + V dp 

which, upon substitution of Eq. (12), becomes 

dig = T d S  + V d p  

Similarly we find 

dA -~ - - p  d V  - -  S d T  

(18) 

and 

(19) 

dG = V dp - -  S d T  (20) 

From these relations we develop the analogues of Eq. (16): 

aH ~H 

ST aV 

~A aA 

eG aG 

(2l) 

(22) 

aV aS 
(23) 

Clearly many other transformations between sets of thermodynamic data are 
possible. What bearing, however, does this methodology have on information theory? 
To understand this it is necessary to introduce a few concepts from statistical mechan- 
ics and to consider the "molecular theory" analogues of these transformation relations. 
We accomplish this in the next section. 
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3. S T A T I S T I C A L  R E P R E S E N T A T I O N  OF T H E R M O D Y N A M I C  
F U N C T I O N S  

The basic idea of statistical mechanics is to represent thermodynamic quantities 
as certain averages taken over the molecular or microscopic mechanical states of the 
system. 81,12) In the final analysis these microscopic states are considered to be non- 
classical (quantum) states, and the probability of observing the system to be in the ith 
state is denoted by P~. This probability is conditioned by the particular "constraints" 
imposed on the system. Knowledge of such constraints is in fact equivalent to the 
possession of "information" on the behavior of the system. They make take the form, 
for example, of statements concerning its volume or energy and are frequently more 
subtle than this. In information theory terms, the method of establishing the functional 
form of Pi is equivalent to maximizing the uncertainty, subject to whatever informa- 
tion (constraints) is already available. In essence, this corresponds to Jaynes' method t2) 
for identifying the least biased distribution. 

Notwithstanding the pragmatic need, at the moment, to determine Pi in this 
manner, the goal of the physicist still remains; namely, the derivation of Pi from 
purely mechanical considerations. The Gibbsian ensemble technique to which Jaynes' 
method (if not his philosophy) is really equivalent does not accomplish this. 

In the so-called canonical ensemble in which the number of molecules, the tem- 
perature, and the volume of the system are constrained to remain constant, it is 
possible to show (22) that 

Pi -~ e-Ed'~T/Q (24) 

where E~ is the energy of the ith quantum state, k is Boltzmann's constant, T is the 
temperature; and Q, the partition function, is given by 

Q = ~ e -EdT~r (25) 
i 

where the sum in Eq. (25) is over all quantum states accessible to the system. 
E~ may depend upon the constrained geometric variable V as well as the number 

of molecules hr. In each quantum state the mean rate of transfer of momentum (per 
unit area) to the walls of the containing vessel represents the "pressure" in that state, 
and from mechanical considerations is given by 

~E, (26) 
Pi -- ~V 

The thermodynamic pressure is then specified by the ensemble average 

p = ~ piPt (27) 
i 

and the termodynamic internal energy by the ensemble average 

U = Z P,E, (28) 
i 
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Taking the total differential of U in Eq. (28) yields 

dU = ~ EidP~ -k ~ PidE~ 
i i 

OE, ,, (29) 
= ~ EidPi q- ~ Pi ~ a v  

i i 

In this equation we have assumed N to remain constant. Substituting from Eqs. (26) 
and (27) gives 

a u  = y~ F~,ae, - p a y  (30) 
i 

Now we may employ Eq. (24) to write 

E~ ---- --kT(ln P~ -t- In Q) (31) 

which can be substituted into Eq. (30) to give 

dU -= - -k  T ~ In PidP~ -- pdV (32) 
i 

where we have used the relation 

Actually Eq. (33) shows that 

dP~ = 0 (33) 
i 

d ~, Pi in P~ = ~ In PidPi (34) 
i t 

and Eq. (34) may be substituted into (33) to yield 

(35) 

which by comparison with Eq, (12) identifies the entropy as 

S = - -k  ~ Pi In Pi (36) 

All the thermodynamic functions are now easily derivable. For example, suppose 
we wish to determine A. Then 

A = U -- TS = ~ P~E~ + k T  ~ P~ !n Pi (37) 
i i 

Substituting for E~ from Eq. (31), we obtain 

A = --kT~,, (P~ In P~ + P~ in Q) --}- k T ~  Pi In P~ = - - k T l n  Q (38) 
i i 

since 

~" P~ ----- 1 (39) 
i 
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Equation (38) is a standard result of statistical thermodynamics, exhibiting the 
connection between the partition function and the thermodynamic properties in its 
simplest form. 

If  we wished to compute the pressure p, we might elect to use Eq. (27) and to 
perform the average over microscopic states once again. It is much simpler, however, 
to employ the transformation theory of thermodynamics and to make use of Eq. (22). 
Thus we may write 

~A 6 in Q 

(40) 
1 ~E i e_E~/~ T 

= 2 p i P i  

The last three steps are included to prove the validity of the first two by recovering 
the proper ensemble average. 

What we have managed to do is to find a set of ensemble averages which are 
supposed to represent thermodynamic quantities and which in fact are related to each 
other like thermodynamic quantities. They therefore transform like thermodynamic 
quantities so that with a few of them at our disposal it is not necessary to perform 
averaging processes again in order to obtain the others. We need merely use the 
transformation theory of thermodynamics. 

This is the manipulative feature which we wish to carry over to information theory. 
Many of the quantities of importance to information theory are carefully chosen 
averages. We shall show that these are also related to each other like thermodynamic 
quantities. (Note that this does not necessarily mean that they are thermodynamic 
quantities; most of the time they will not be.) As a result, we may obtain certain 
important averages from others without having to perform the averaging process 
anew each time. Instead, we merely invoke the appropriate thermodynamic-like 
transformation. We address this subject in the following sections. 

4. I N F O R M A T I O N  T H E O R Y  R E L A T I O N S  DERIVED BY T H E  M E T H O D S  
OF STATIST ICAL T H E R M O D Y N A M I C S  

In this section we derive certain important information theory theorems by 
the methods of statistical thermodynamics. We shall also define certain information 
theory equivalents of thermodynamic quantities. Consider then a noiseless channel ~13~ 
coupled to a zero-memory source (1~ through which we transmit messages, each 
message requiring a time T for its transmission. 

The capacity C of the channel measured in bits per unit time is defined as 

1 In M(T) (41) C = lim 
r ~  ln2  T 
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where M ( T )  is the number of distinct messages which can be transmitted in time T. 
In what follows we shall drop the lira symbol, and it will be understood that T and 
other quantities related to it in scale will always be very large. (This resembles the 
custom in statistical mechanics, where, unless otherwise specified, the number of 
molecules in a thermodynamic system is considered essentially infinite.) 

Suppose the words "emitted" by the source are coded in the channel in terms 
of code symbols for which the average time of transmission per symbol is ~. Then we 
would expect each message to contain 

L = T/cr (42) 

symbols. The largest possible number of messages in time T occurs when there are 
absolutely no constraints, so that the transmission of one symbol in no way limits 
the symbol which follows it. Then if the alphabet of code symbols contains r such 
symbols, 

M ( T )  = r L = rr/~ (43) 

from which we compute, using Eq. (41), 

In r 
C*(r, ~) - -  (44) 

~ l n 2  

where C*(r, ~) is clearly the maximum capacity possible for given r and ~. 
Usually the capacity of the channel will fall far below C* because there will be 

constraints present (for example, the need to bind the symbols into words) which 
reduce the possible number of messages. In any event, it is wasteful if the channel is 
coupled to a source which emits information more rapidly than the channel can 
handle it, and the problem is to "match"  channel and source so that capacity is not 
underused nor information dissipated (because it cannot be handled). 

We now begin an attack on this problem, using methods which are common to 
statistical thermodynamics. In order to start with the simplest possible case we 
consider a situation which will permit us to develop the information theory analogue 
of the microcanonical ensemble, (12) in which a thermodynamic system is constrained 
to have constant volume, molecular content, and energy. To construct the analogue 
it is necessary to impose still another constraint on our channel over and above the 
restriction which binds symbols into words, namely, to limit the number of words 
in each message to be exactly W. This constraint corresponds to what Jaynes TM has 
called "semi-optimal" transmission, and determines the mean transmission time per 
word as 

t = T / W  (45) 

We assume that the channel possesses a "spectrum" of transmission times for 
code words such that time ti is required for the transmission of the ith word. The 
spectrum of times is conveniently denoted by the f o r m a l  vector t whose components 
are the numbers h �9 We wish to answer the following questions. 

What assignment of word probabilities P~ for the source will allow us to use the 
channel at full capacity; and alternatively, given the assignments P i,  what "spectrum" 
ti wilt achieve the same result? 
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To simplify matters, we shall restrict our considerations to "nondegenerate" 
word time distributions, i.e., to distributions in which no two words have the same 
time. No essential complication would result from the inclusion of degeneracy. 
If, then, messages are considered which contain ni words of type i, there will be 

~(n)  = W!/~ n,! (46) 
i 

such messages possible, where n is a formal vector (denoting a particular distribution 
of ni) whose components are the numbers n~. The total number of messages is then 
obtained by summing over n subject to the obvious constraints 

Thus 

Z n i ~ -  W 
i 

Z lini ~- T 
i 

M(T, W) : ~ [2(n) 
l l  

(47) 

(48) 

(49) 

The average frequency of appearance of the ith word among these messages is clearly 

(hi) = ~, ni(n) ~(n) /~  ~2(n) (50) 
n n 

and the probability of a given word (in the channel) is 

e l  = ~n~) /w (51) 

The use of the channel at full capacity implies the possibility of every possible 
message subject to the imposed constraints and therefore a frequency of appearance 
of a word given by Eq. (51). Thus the frequency P~ in the source should be 

Pi = Pi' (52) 

If  M and T are very large, the average value (n~) will be negligibly different from 
ni (n*), where n* denotes the distribution which gives the largest value of O,(a~) and 
In M will be indistinguishable from In s where g2* is the value of 1-2 that goes with 
n*. Thus we find (n~) = n~* = n~(n*) by maximizing g2 (or, more conveniently, its 
logarithm) subject to the constraints imposed by Eqs. (47) and (48). The result proves 
to be 

(n~) = n ~ * =  W P i ' =  WPi = We-~'/q (53) 

where 

q = ~ e -a~j (54) 

and A is an undetermined multiplier (1G) which can, in principle, be determined by 
substituting Eq. (53) into (48). 
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The quantity q is the analogue of the partition function per molecule aT~ (in this 
case, per word) which occupies such an important  position in statistical mechanics. 
A is the analogue of a temperature. 

Thus to use the channel at capacity when the spectrum of word times is fixed, 
we should select a source whose word probabilities are given by 

P~ = e-~a'/q(A) (55) 

while if we are faced with the more common situation, namely, a source with fixed 
P~, we must select word times governed by the relation 

t~ = - 0 / , ~ )  In Piq(a)  (56) 

Equations (51) and (52) represent the answers to the two questions posed above. 
We are now in a position to define the information theory entropy and to show 

its relationship to the average word time t, under the condition that we employ the 
channel at capacity. Under this condition 

t = }2 e , t ,  (57) 
i 

Assume for the moment  that the t~ are fixed and that we accommodate the source to 
the channel so that only the Pi vary. Then any change in mean word time t can be 
expressed as 

dt = ~ t~dP~ (58) 
i 

If  we substitute h from Eq. (56), the result is 

dt = -- xl ~ ln P~dP~ = l d l--K ~ Pi ln 
i i 

(59) 

where we have used ~ dPi = O, and ~c is a constant which we choose as 

= l/ln 2 (60) 

so that the quantity in braces will have the dimensions of bits. That quantity is in 
fact the famous information theory entropy per word, and so we write 

S = --K ~ Pi in Pi (61) 
i 

where this S should not be confused with that defined in Eq. (36) of  which it is, 
nevertheless, the analogue. Thus we may write 

and defining 

dt = (1/~cA) dS (62) 

~ - =  1/~cA (63) 
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as the temperature of the source, we have 

d t = r d S  
and 

(64) 

Pi = e-~/K'/q("r) (65) 

Equation (65) is the complete analogue of Eq. (24), with K replacing Boltzmann's 
constant and h taking the place of the energy of the ith quantum state. Equation (64) 
is the analogue of the thermodynamic relation, Eq. (12), for the case in which V is 
constant and the thermodynamic system is permitted to exchange energy with its 
surroundings only through the flow of heat; i.e., it is not allowed to perform work. 

In spite of the extensive isomorphism with statistical thermodynamics, the reader 
is reminded that the correspondence is only formal and that quantities like S, t, and ~- 
are conceptual rather than physical in origin. 

The use of an information theory temperature -c as a parameter for characterizing 
a source is a novel and useful concept and may be justifiably regarded as a bonus 
provided by the interdisciplinary approach. If  this source is to be matched with a 
channel intended for use at full capacity, then the channel will have to contain a code 
of  mean word time t specified by Eq. (57). The mean word time is like the partial 
molar internal energy {is) (internal energy per molecule) or energy density in a thermo- 
dynamic system. The channel may be said to come to equilibrium with the source at 
temperature r. When this equilibrium is established the mean word time is determined. 
Source and channel are "matched" when their temperatures are the same. 

The source is therefore the analogue of a thermostat in thermodynamics. A 
system in equilibrium with this thermostat will possess a mean energy density deter- 
mined by the temperature of the thermostat. The temperature ~- of the source also 
characterizes its degree of randomness. The more equal the probabilities of having 
the source emit various words, the higher the temperature; i.e., higher temperature 
corresponds to greater randomness. 

Since t is the counterpart of U, the thermodynamic internal energy, and r is the 
counterpart of T, we may define the information theory analogue of A, the Helmholtz 
free energy (per molecule), as 

= t -- •S (66) 

and by exactly the same process which produced Eq. (38) we now obtain 

~ .  --K~- In q(r) (67) 

Reintroducing Eq. (66), we may write this as 

t -- ~'S = --~c~- In q(l-) (68) 

We shall use this expression later. 
Having completed the discussion of this simple example, it is useful to consider 

a slightly more complicated analogue; the information theory counterpart of the 
grand ensembleJ TM We now no longer require W to be fixed and consider each message 
of length T to be part of a much longer grand message. In fact, the longer message 
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may be regarded as composed of J// messages, each requiring time T for its trans- 
mission. Thus the total message will require time ~/~T for transmission. Although each 
component message has fixed T, it is "open"  insofar as its word content W is con- 
cerned. The grand message, however, will have a fixed word content ~ .  

Each component message will still be characterized by a word distribution n 
and the number of possible messages of type n will still be as defined in Eq. (49), 
except that now W will depend on n, so we write 

~ = WJTrini! (69) 

Suppose we consider a grand message in which the distribution of messages of type n 
is characterized by M . ,  M. being the number of such component messages in the 
grand message. Then the number of grand messages going with this distribution is 

t~.. (70) 
FM = ~ r  M=! 

The total number of messages available to the channel is 

Mc(JZT, ~/U) = ~ PM 
M 

(7i) 

Each term in this sum is subject to the constraints 

n 

n 

(72) 

(73) 

and again we approximate the logarithm of the sum by the logarithm of its maximum 
term. We thus maximize F m subject to Eqs. (72) and (73). The result for M. is then 

M .  = ~ D n ~ / W . / ~  ~?m)' Wm (74) 
Ill  

where ~, is an undetermined multiplier which can be fixed by substituting Eq. (74) 
into (73). Obviously the probability 0. of the source emitting a message of type n is 

where 

O, = M.tJg  = X~.TWr"tZ (75) 

Z = Z f2~7 Wm (76) 
111 

is the analogue of the grand partition function (12) in statistical thermodynamics. 
Note that we are now dealing with a partition function for a whole message 

rather than for a word. In fact, if we review the steps leading to Eq. (75) we see that 
f2, need not be confined to the form offered in Eq. (69); Eq. (75) will still hold. This 
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means that it is possible to deal with non-zero-memory sources in which successive 
words are correlated. We need only take proper account of these correlations in the 
evaluation of f2. .  Nonetheless, in this article attention will be restricted to the zero- 
memory case and we shall use Eq. (69). 

The probability of the ith word in the grand message is clearly 

Pi = ~ ni(n) 0, (77) 
. w .  

and for employment of the channel at full capacity we should match to a source 
which emits words with these probabilities. 

The isomorphism with statistical thermodynamics is so complete that a number 
of important results may now be stated almost without proof, the reader being 
referred to standard texts on statistical mechanics for satisfaction in this respect. It is 
convenient to introduce a quantity/3 defined by 

/3 ----- 7er/K" (78) 

In terms of/3 the grand partition function may be written as 

Z = ~ Ome-Zrv~/K'fi veto (79) 
m 

Next we collect all terms with W m equal to fixed W and write Eq. (79) as 

Z = • Q~v / 3rv (80) 
W 

where 
Qw = e-rw/K~ ~ s (81) 

Ill 

where now m refers to the set of formal vectors such that Wr, = W. Qw is called 
the partition function of a message in the canonical ensemble. If  we approximate 
the sum in Eq. (81) by its maximum term Ore*, the result will simply be that which 
is derived by substituting Eq. (55) into (46), taking n~ = WP~. Thus 

f2m* = eT/K'[q(r)] w (82) 

and replacing the sum in Eq. (81) by this result gives 

Qrv = qee (83) 

Introducing Eqs. (78) through (82) into (75) gives 

Pw = Qrvfirv/z (84) 

where Pw is the probability of a message of word content W. From this it may easily 
be shown that the average word content W of a component message is 

{ a In Z ~ (85) w = /3  
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For ~ ' ,  ~ - +  co, it can be demonstrated that W is negligibly different from W*, 
the value of W going with the maximum term in Z in Eq. (80). That maximum term 
satisfies the condition 

or using W* = W, 

(a in Qw*] = ln/3 
~W* 1, 

( OlnQ__~] = - l n / 3  

Finally, substituting Q~ = qW from Eq. (83), we get 

(86) 

(87) 

lnf l  = - - l n q - -  Kr a {Wa(T)} (88) 

where the last step involves the use of  Eq. (67). The quantity in braces on the right 
is just the Helmholtz free energy of a message of word content W and temperature r, 
so that the derivative is ~, the information theory chemicalpotential ~zgl per word. Thus 

/? = e "/~" (89)  

and is the analogue of the statistical thermodynamic absolute activity. Equation (85) 
may in fact be written 

- -  [ 0 In Z ] (90)  
W =  Krk 0/~ ]~ 

Thus it is apparent that kc determines the average word content of a component  
message, just as r determines the mean time of transmission of a word. 

The situation which we have arrived at is the following. We are able to deal with 
messages emitted by a source of fixed entropy per word (fixed P0  and to characterize 
a channel coupled to this source by two parameters r and b~. These parameters 
determine the average time of transmission and average word content of a message 
whose transmission time is T. Alternatively, we could fix the word content and the 
average word transmission time and employ Eq. (48) to determine r and Eqs. (88) 
and (89) to fix/,. 

In one case W and t are allowed to fluctuate while/ ,  and r are the fundamental 
quantities, and in the other case W and t are fixed and fundamental while/x and r 
are derived. The/x and r which are derived in the last case do give rise, when regarded 
as fundamental, to average values W and i which are identical, for T -+ co, with W 
and t used to derive them in the first place. 

In general, the capacity of  the channel will depend upon b~ and r, and for a source 
to be matched to the channel its word probabilities Pi should be specified by Eq. (65). 
These results are quite general and can be used even in connection with sources 
having non-zero memories. In such cases, however, Qw is not simply given by a ~v, 
but must be evaluated taking correlation into account. 

The statistical thermodynamic approach can also be used with messages of 
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finite length. For this purpose some of the techniques already in existence for thermo- 
dynamic systems with "end"  effects may be employed. In such systems the value of  n~ 
may fluctuate appreciably from WP~ in a given message. On the other hand, using 
the grand ensemble approach where W and t are not fixed, it is possible to discuss 
these fluctuations and to characterize them in terms of r and/, .  

The fixing of both t and W may of course be viewed, alternatively, as the fixing 
of T and W. This corresponds to channels which, according to Jaynes, are only 
capable of semi-optimal transmission. With optimal transmission, the more usual case, 
only T is fixed. 

Under this circumstance we maximize f2 in Eq. (46) without invoking the 
constraint (47). We will be able to show that q(r) = 1 and that r = 1/C. Equation (88) 
then requires/3 = 1 and Eq. (89) shows that/~ = 0. Thus for optimal transmission 

r = 1/C, /~ = 0 (91) 

Now to the proof. 
In Eq. (46) we replace W by ~ ni and take the variation of In a'-2 with respect to 

the various n~, setting it equal to zero. The result is 

a w =   ln(>'la'i = 0 ,  , , ,  (92) 

Taking the variation of Eq. (48), with T constant, multiplying by an undetermined 
parameter A, and adding to Eq. (92) gives (upon setting each coefficient equal to zero) 

o r  

 93, 

Pi = n i /~ .  nj = e -a~i (94) 
J 

Substitution of Pi into Eq. (58) once again shows that ;~ = 1/Kr, so that we have 

Pi = e -ti/KT (95) 

and since ~ Pi = 1, this shows that 

q(r) = • e -q /~  = 1 (96) 
i 

which is part of the desired result. 
In a celebrated proof, (4) Shannon showed that if a channel possesses r code 

symbols, and there is no restriction on W, the capacity Cr in r-ary units (log base r) 
is the largest real root of 

r - c ~  = 1 (97) 
i 
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The typical term in this equation may be expressed in the form 

r-C,t, = [eln ,.l-Cry, = e-(C,Zn r)~ = e-C~at~, (98) 

where (?nat refers to the capacity in natural units. If we use the fact that I/K ----- In 2, 
we can write 

r -c~i = e -c~dK (99) 

where C is the capacity in bits per unit time. Substitution of Eq. (99) in (97) shows that 
q(%) = 1 if z 0 is interpreted as 1/C. This is the conventional information theory 
approach to "optimal" transmission. 

In order to show that the statistical thermodynamic analogue method gives the 
same result, we must prove, without invoking Eqs. (97) or (98), that ~- = 1/C. At 
the same time, this will identify the % arbitrarily defined above as 1/C with the z 
(under optimal transmission) which we have introduced as the information theory 
temperature. To accomplish this we substitute Eq. (96) into (68) and obtain (under 
optimal transmission) 

s/t = 1/~- (100) 

But Sit is simply the capacity at T 0 , i.e., the entropy per second; a fact which may be 
demonstrated by using the maximum terms in Eq. (49) for M(T, W), making use of 
Eq. (53) with ,k = 1/K~-, together with Eq. (46), and substituting M(T, W) so obtained 
into (41). The result is 

C =(K/t) In q + 1/r (101) 

where we have used Eqs. (47), (48), and (60), and the fact that T : Wt. We may 
write Eq. (101) as 

C = (1/~-t)(~r in q + t) (102) 

Substituting the negative of the left member of Eq. (68) for K~- in q in Eq. (102) yields 

C = S/t (103) 

Thus we may identify z in Eq. (100) with %,  the desired result. Whenever the channel 
is totally unconstrained so that it is used at maximum capacity, it follows from Eq. (44) 
that 

% = ~-* = a In 2/ln r (104) 

The maximmn capacity of the channel is achieved when the code is free of 
constraints. Under this circumstance, C* is given by Eq. (44). At less than maximum 
capacity, C < C*, and according to Eq. (103), 

t/S >/a In 2/ln r or t/aS ~- I/S >~ In 2/In r (105) 

in which l is the mean length in symbols of the code words. 
This is Shannon's first theorem. (~) How closely we achieve the equality depends 

on how constraint-free we choose the channel code. If  the entropy S were measured 
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in r-ary units, the ratio of logarithms on the right would have to be replaced by unity. 
Equation (103) defines "matching" quite generally as the condition under which 
the entropy or information per word per unit time delivered by the source (the right 
number) just equals the channel capacity. To a large degree Shannon's theorem has 
been established using the statistical thermodynamic analogue method. 

Nevertheless, this method is very closely related to those conventional in informa- 
tion theory (even if the language is altered slightly). But even if there is no particular 
manipulative advantage to deriving Eq. (105) by this method (and under certain 
circumstances there may be), it has permitted us to define and characterize certain 
quantities, for example the information temperature and chemical potential, and to 
round out the analogue. 

Now that the analogue is relatively complete, we are in a position to formulate 
certain questions, the answers to which are conveniently obtained by applying the 
transformation theory of thermodynamics discussed in Sections 2 and 3. This matter 
is discussed in the next section. 

5. T H E R M O D Y N A M I C - L I K E  T R A N S F O R M A T I O N S  

Before proceeding, it is worthwhile to summarize some of the results of the 
preceding sections. We have considered a channel defined by a code subject to certain 
constraints. Among these was a fixed "spectrum" of word transmission times h .  
If  t is used to denote the spectrum of word times, the capacity C may be expressed as 
a function of t and t, C = C(t, t). We discovered that if the channel was to be used 
at capacity it was necessary to match it to a source whose word probabilities were 
given by 

P~ = e-t'/~'/q('r) (106) 

where 

q(~-) = ~ e -~'/~" and K = 1/ln 2 (107) 
J 

r is determined by the requirement ~ P i h  = t. If the word content of a message is 

unconstrained, q(~') = 1 and ~- may be shown to be equal to 1/C. 

If the information theory entropy per word is defined as S = --• ~ P~ In P~, 

then it may be shown that the variation in mean word time required of a channel 
with fixed t and fixed word content W, if it is to remain matched to a source of 
entropy S, as S varies, is given by 

dt = "r dS  (108) 

Alternatively, we can ask for the change in the entropy of the source required for 
continued matching with a channel whose mean word time changes. Clearly this will be 

dS  = (I/T) dt (109) 

As we change the source so that the various Pi change, it will not be possible 
in general to "match" it to the channel by merely changing ~- as long as the spectrum t 
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remains fixed. However, matching may be accomplished by allowing the h to change 
so as to further accommodate the changing source. It is this subject which we now 
address, and in connection with which we will have an opportunity to use the trans- 
formation theory mentioned in the early sections. 

it  is easiest to begin by considering a set of parameters, )(1, Xz .... , Xk upon 
which the various h will be made to depend. The exact choice of functional relation 
t~(X) (where now X stands for the set X1, X~, etc.) will define a "strategy" for matching 
under varying conditions. To deal with the simplest case, we will assume that only 
a single X~ is used so that X may be replaced by X. No increased difficulty is encoun- 
tered when several parameters are involved. 

Equation (58) must now be replaced by 

dt~ 
dt = ~ hdP~ + ~ P~ - d x  d X  (110) 

i i 

if the variation in t due to a variation in X is to be included. If  matching is to be 
achieved, Pi must still be given by Eq. (65), and Eq. (110) may be expressed in the form 

where 
dt = "r dS  - -  zr d X  (111) 

dt~ (112) 
: - -  ~ P i  d X  

i 

The reader is invited to compare Eq. (111) with (12). For convenience we may refer 
to ~r as the information theory pressure. 

We can immediately make use of the transformation theory of thermodynamics 
to express 7r in terms of the partition function. Thus taking the total differential of 
defined by Eq. (66), we have 

d ~ = d t - - ~ ' d S - - S d r  

and substituting Eq. (111) gives 

(113) 

Substitution in Eq. (66) gives 

t = ~ - - ~ -  ~rrx ~ ~ /x 

(116) 

(117) 

d~ = --rr d X  - -  S dz  (114) 

From this we obtain 

where we have used Eq. (67). 
We may also make use of the transformation theory in order to express t directly 

in terms of q. Thus from Eq. (114) we see that 
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and use, once more, of Eq. (67) leads to 

(~ In q] 
t = K'c ~ ~--b-~ ]x (118) 

S may also be expressed in terms of q by substitution of Eq. (67) into (66): 

[~(~" In q)] 
S -= x t ~ - l x  (119) 

Next we apply the transformation theory in order to solve a practical coding 
problem. We shall choose a somewhat artificial case as a means of reducing the 
algebraic manipulations so that the details do not obscure the method, which is, 
after all, the primary target of our exposition. Thus we will deal with a channel 
containing a code word spectrum such that 

h(x) = iX + X 2 (120) 

where i assumes all values from zero to infinity. In connection with this channel we 
ask the following question: How does the channel capacity C (under matching) change 
as the word time spectrum is changed due to changing X, under the condition that the 
mean word time t remains fixed? 

If we are to answer this question, we shall need the coefficient 

~C (121) 

We employ thermodynamic transformation theory in order to express/~ in a more 
convenient form. We begin by noting, from Eq. (111), that another expression for ~r, 
besides that given in Eq. (115), is 

(122) 

where Eq. (4) has been used. Referring to Eq. (111), it is seen that the first derivative 
on the right is % so that Eq. (122) can be rearranged to 

7" t 

Now according to Eq. (103), S = Ct; and substitution of this relation into Eq. (123) 
gives 

- - - - t  = t F  (124) 
T t 

o r  

1" = ~r/t~ 
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By using Eqs. (115) and (118), f '  may be expressed in terms of the partition function. 
Thus 

/ ~ C  [4 in q~ / _l~ In q~ 

In order to calculate _F', therefore, we must first evaluate q0-, X) and then 
eliminate T by expressing it in terms of the value of t, maintained fixed in the problem. 
The evaluation of q is straightforward using Eq. (120). Thus 

q = exp I iX+K~. X2f~ = e-X2/K~ ( e - X / ~ ' ) i  - -  1 - -  e - X / ~  (126) 
i=O  i = 0  

where we have summed a geometric series. Now 

0 In q X 2 q- X(1 - -  X )  e - x /K"  
t = •-c 2 ~ - -  1 - -  e - x / ~  (127) 

Solving for ~- in terms of t, we obtain 

1 ~r in ll  q_ X I - x t - ~  (128) 

Equation (120) requires t to be at least as large as X 2 so that the argument of the 
logarithm must be greater than or equal to unity. Thus, as t increases for fixed X 
(fixed code word spectrum ti), ~- must increase. 

This is consistent with the statistical thermodynamic analogue where internal 
energy density is increased with increasing temperature, t being the analogue of 
energy density. 

We now use Eq. (115), together with Eq. (126), 

(~ In q~ 2X + (1 --  2X) e - X ~  ~" 

~r = •r  ~ 1 ,  = - -  1 - -  e -X~  K" (129) 

The denominator of Eq. (125) is available in (127), so that now we can use it together 
with Eq. (129) to obtain 

p = 1 j2Xq-  (1 -- 2 X ) e - X / ' ~  t 
IX 2 q- X(1 - -  X ) e - X ~  (130) 

Eliminating ~- from this expression, using Eq. (128), finally yields 

8C X 2 + t z X 

Thus an increase in X at constant t, which, according to Eq. (120), implies an increase 
in the length of each word, leads to a decrease in channel capacity. This is not sur- 
prising since increasing the various h without increasing the average word length 
will require an increased use of the smaller words and therefore, effectively, a smaller 
alphabet. 

822/x/I-9 
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Next we discuss the opposite problem. We are faced with a change in source 
described (for simplicity) by a single parameter y. Thus we have 

P~=P~(y)  (132) 

In this case S, which is fully specified by the P~, will be a function o fy  only, while the 
h ,  which, under matching, will have to be given by Eq. (106), will depend on both y 
and r: 

h = h(Y, z) (133) 

Equation (110) is then replaced by 

dt = Z tidP, + 2 P~ t\~v1~ dy -k \~-z ]~ dr 
g i 

Defining 

and 

we may write Eq. (134) as 

(134) 

= *'i ( 1 3 5 )  

~7 = Z Pi [ at~ t (136) 

dt = 7 dS + ~ dy + ~ d7 

- G ds  ay + dy+ d7 
(137) 

All sorts of transformations are possible using Eq. (137), but if we ask the same 
question as we did in connection with the previous problem, the procedure is much 
simpler than in that case. For example, if we ask for the rate of change of capacity 
with y such that the mean word time t remains fixed, we need the following coefficient: 

Substituting from Eq. (103) this becomes 

l d S  
V '  - -  ( 1 3 9 )  

t4v  

Since dS/dy is a given quantity, the problem is solved. 

6. C O N C L U S I O N  

We could carry the process far beyond the point reached in the preceding section 
but enough has been said to demonstrate the method. 

The statistical thermodynamic analogue method undoubtedly has considerable 
power. It should be especially useful if extended so as to deal with non-zero-memory 
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sources. It may even be useful in connect ion with noisy channels,  bu t  this remains 

to be demonstrated.  One suspects that  the analogue of irreversible thermodynamics  (2~ 

should find application there since one is confronted with problems of  entropy 
production, but  this also remains to be shown. 
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